

Tetrahedron Letters 43 (2002) 3653-3655

A high yielding preparation of α-trimethylsilyloxyphosphonates by silylation of α-hydroxyphosphonates with HMDS catalyzed by iodine

Habib Firouzabadi,* Nasser Iranpoor* and Sara Sobhani

Department of Chemistry, Shiraz University, Shiraz 71454, Iran Received 18 February 2002; revised 19 March 2002; accepted 28 March 2002

Abstract—A general, versatile, high yielding and convenient procedure for the immediate conversion of various α -hydroxyphosphonates to α -trimethylsilyloxyphosphonates under neutral conditions using HMDS in the presence of a catalytic amount of iodine is described. © 2002 Elsevier Science Ltd. All rights reserved.

 α -Trimethylsilyloxyphosphonates show properties that make them attractive in biology, industry and organic chemistry.¹ The interest in the preparation of α trimethylsilyloxyphosphonates arises on the one hand from the existence of an α -acidic hydrogen in these compounds, which can be metalated by lithium diisopropylamide to afford relatively stable α -carbanionic species.² On the other hand, the C-P and Si-O bonds of α -trimethylsilyloxyphosphonates are readily cleaved under alkaline and acidic conditions.³ Therefore, α lithiated α -trimethylsilyloxyphosphonates have become important synthons in organic synthesis as masked acyl anions. They react with various ketones to produce the corresponding *a*-trimethylsilyloxy ketones.⁴ Unsymmetrical ketones, β , γ -unsaturated ketones and carboxylic acids could be obtained by means of alkylation of α -lithiated α -trimethylsilyloxyphosphonates followed by cleavage of the Si-O bond and elimination of dialkyl phosphate in alkaline media.⁵ α -Lithiated α -trimethylsilyloxyphosphonates can also undergo facile acylation with various acylating agents to afford the correspond-

Scheme 1.

ing α -acylated products, which could be converted to α -hydroxy ketones after cleavage of the Si–O bond and elimination of dialkyl phosphate in alkaline media.²

A survey of the literature indicates that a practical, general and high yielding method for the synthesis of pure α -trimethylsilyloxyphosphonates has not yet been Diethyl described. trimethylsilyloxyphosphite (DTMSP)⁵ or triethylphosphite and trimethylsilyl chloride^{1b,c} are the most common silicon-phosphorous reagents which have been reacted with aldehydes to produce α -trimethylsilyloxyphosphonates under harsh reaction conditions and require rather long reaction times. Another reported procedure for the preparation of these compounds is the reaction of silvl phenyl ketones with trialkylphosphites at a rather high temperature (80°C) with a long reaction time (12 h).⁶ Hexamethylsilathiane has been used for the direct silylation of α -hydroxyphosphonates⁷ at 50–70°C with moderate yields (55–78%).⁸ Trimethylsilyl chloride has also been used for the preparation of the diethyl *a*-trimethylsilyloxybenzylphosphonate sodium salt of diethylphosphite and benzaldehyde in moderate yield (67%).^{5a}

The reactions of α -hydroxyphosphonates have been under investigation in our laboratory in recent years.⁹ A recent report on the silylation of alcohols with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) and iodine as a catalyst¹⁰ prompted us to apply this method to the direct silylation of α -hydroxyphosphonates. Reactions of various α -hydroxyphosphonates (**1a–o**) occurred immediately at room temperature with excellent yields using this reagent system (Scheme 1, Table 1).

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00631-7

^{*} Corresponding authors. Tel.: +98-711-2284822; fax: +98-711-2280926; e-mail: firouzabadi@chem.susc.ac.ir; iranpoor@ chem.susc.ac.ir

Table 1.	Direct silyl	ation of α	-hydroxyph	osphonates
(1a-o) wi	th HMDS	and a cata	alytic amoun	nt of I ₂

Product 2 ^{Ref.}	R-	Yield ^a (%)
a ^{1a,c,5a,6}	C ₆ H ₅ -	98
b ¹¹	$4-CH_3C_6H_4-$	97
c ¹²	$4-CH_3OC_6H_4-$	97
d ¹⁴	2,4,6-(CH ₃)C ₆ H ₂ -	98
e ¹²	$2-ClC_6H_4$ -	97
f ¹²	$3-ClC_6H_4$ -	95
g ¹²	$4-ClC_6H_4$ -	98
h ¹⁴	$2,6-Cl_2C_6H_3-$	97
i ¹²	$2 - O_2 NC_6 H_4 -$	95
i ¹²	$3-O_2NC_6H_4-$	94
k ¹²	$4-O_2NC_6H_4-$	96
l ¹⁴	2-Naphthyl	94
m^{14}	3-Pyridyl	92
n ³	PhCH=CH-	93
0 ³	CH ₃ CH=CH-	92

^a Isolated yields; reaction occurred immediately at room temperature.

As shown in Table 1, various types of α -hydroxy-(phenylmethyl) phosphonates (**1a**–**k**) were cleanly converted into the corresponding α -trimethylsilyloxy-phosphonates (**2a**–**k**) in excellent yields (94–98%). α -Hydroxy-2-naphthyl, 3-pyridyl and β , γ -unsaturated phosphonates (**11–o**) were also silylated efficiently giving the corresponding α -trimethylsilyloxyphosphonates (**21–o**) in 92–94% yields.

Due to the neutral nature of the reaction media, cleavage of O–Si and C–P bonds was not observed. Therefore, products of high purity were obtained after work-up and further purification was not required.¹³ In order to show the unique catalytic behavior of iodine in these reactions, we have performed the silylation of **1a** with HMDS in the presence of NBS, NCS and Br₂ which possess electrophilic halogens. The results showed that the reaction times were long (9–10 h) and the cleavage of the C–P bond occurred to produce benzaldehyde in 40–60% yields. All spectral data of the isolated compounds confirm the structures that we have assigned to the products.

All mass spectral data¹⁴ consist of molecular peaks with weak intensities due to the ready cleavage of -P(O)(OEt)₂ followed by loss of the -Si(CH₃)₃ fragment. A common peak at m/e 73 due to formation of the -Si(CH₃)₃⁺ ion was also observed in the mass spectra of all the reported compounds. A strong peak at M⁺⁺ Si(CH₃)₃ was also observed which is the result of combination of M⁺ and an Si(CH₃)₃⁺ ion. The formation of these peaks can be explained by the resonance-stabilized forms which are shown in Scheme 2.

Consequently, in this paper, we have described a simple procedure for the first general, versatile, and high yielding synthesis of a variety of α -trimethylsilyloxyphosphonates by direct silylation of α -hydroxyphosphonates with HMDS. Extension of this methodology for the preparation of α -trimethylsilyloxyphosphonates in the presence of other easily available catalysts is in progress in our laboratory.

Acknowledgements

We are thankful to the Shiraz University Research Council for the partial support of this work.

References

- (a) Kabachnik, M. M.; Synatkova, E. V.; Novikova, Z. S.; Abramova, G. L.; Rozhkova, N. G.; Andreeva, E. I. Vesthn. Mosk. Univ., Ser. 2: Khim. 1990, 31, 384; (b) Birum, G. H.; Richardson, G. A. US Patent 3, 113, 139 (to Monsanto Chem. Co), December, 3, 1963; Chem. Abstr. 1964, 60, 5551d; (c) Olah, G. A.; Wu, A. J. Org. Chem. 1991, 56, 902.
- Sekine, M.; Nakajima, M.; Hata, T. Bull. Chem. Soc. Jpn. 1982, 54, 218.
- Hata, T.; Hashizume, A.; Nakajima, M.; Sekine, M. Tetrahedron Lett. 1978, 4, 363.
- 4. Koenigkramer, R. E.; Zimmer, H. *Tetrahedron Lett.* **1980**, *21*, 1017.
- (a) Sekine, M.; Nakajima, M.; Kume, A.; Hashizume, A. Bull. Chem. Soc. Jpn. 1982, 55, 224; (b) Evans, D. A.; Hurst, K. M.; Truesdale, L. K.; Takacs, J. M. Tetrahedron Lett. 1977, 29, 2495; (c) Hata, T.; Hashizume, A.; Nakajima, M.; Sekine, M. Tetrahedron Lett. 1978, 4, 363.
- Sekiguchi, A.; Ikeno, M.; Ando, W. Bull. Chem. Soc. Jpn. 1978, 51, 337.
- 7. (a) Texier-Boullet, F.; Foucaud, A. Synthesis 1982, 916;
 (b) Baraldi, P. G.; Guarneri, M.; Moroder, F.; Polloni, G. P.; Simoni, D. Synthesis 1982, 653; (c) Sardarian, A. R.; Kaboudin, B. Synth. Commun. 1997, 27, 543.
- Lebedev, E. P.; Mizhiritskii, M. D.; Baburina, V. A.; Mironov, V. F.; Ofitserov, E. N. *Zh. Obshch. Khim.* 1979, 49, 1731.
- (a) Firouzabadi, H.; Iranpoor, N.; Sobhani, S.; Sardarian, A. R. *Tetrahedron Lett.* 2001, 42, 4369; (b) Firouzabadi, H.; Iranpoor, N.; Sobhani, S. *Tetrahedron Lett.* 2002, 43, 477.
- 10. Karimi, B.; Golshani, B. J. Org. Chem. 2000, 65, 7228.
- 11. Ernst, A.; Karola, H.; Hermann, M. Synthesis 1990, 323.
- 12. Yongzhen, Z.; Zhonghua, L. Yingyong Huaxue 1991, 8, 33.
- 13. Typical procedure for the preparation of α -trimethylsilyloxyphosphonates from α -hydroxyphosphonates: A mixture of α -hydroxyphosphonate **1a** (5 mmol) and iodine (0.05 mmol) in CH₂Cl₂ (15 mL) was prepared. HMDS (3.5 mmol in 10 mL CH₂Cl₂) was added dropwise within 5 min to the reaction mixture. The reaction occurred immediately with the generation of ammonia gas. Then, finely powdered Na₂S₂O₃ (\cong 1 g, portionwise) was added to the mixture and after 10 min, the reaction mixture was

filtered and the filter cake was washed with CH_2Cl_2 (3×5 mL). The resulting solution was washed with H_2O (5 mL) and the organic layer was separated and dried over anhydrous Na₂SO₄. Evaporation of the solvent afforded the desired pure product **2a** in 98% yield (Table 1).

14. Spectral data and elemental analyses of unknown α trimethylsilyloxyphosphonates: 2d: ¹H NMR (CDCl₃, TMS): δ -0.04 (s, 9H, Si(CH₃)₃), 1.02 (t, 3H, ²J_{HH}=7 Hz, 2-OCH₂CH₃), 1.22 (t, 3H, ${}^{2}J_{HH} = 7$ Hz, 2-OCH₂CH₃), 2.12 (s, 3H, CH₃), 2.25 (s, 3H, CH₃), 2.51 (s, 3H, CH₃), 3.58–3.68 (m, 1H, 2-OCH₂CH₃), 3.81–3.90 (m, 1H, 2-OCH₂CH₃), 3.98–4.10 (m, 2H, 2-OCH₂CH₃), 5.28 (d, 1H, ${}^{1}J_{PH} = 18.3$ Hz, CH), 6.66 (s, 1H, C₆H₂), 6.72 (s, 1H, $-C_6H_2$) ppm; ¹³C NMR (CDCl₃, TMS): 0.00 (s, -Si($\underline{C}H_3$)₃), 16.56 (d, ${}^{3}J_{\underline{CP}}$ = 5.9 Hz, 2-OCH₂ $\underline{C}H_3$), 16.87 (d, ${}^{3}J_{CP} = 5.9$ Hz, 2-OCH₂CH₃), 21.16 (s, -CH₃), 21.67 (s, $-CH_3$), 21.69 (s, $-CH_3$), 62.70 (d, $^2J_{CP}=7.1$ Hz, 2- OCH_2CH_3), 62.92 (d, ${}^2J_{CP}=7.1$ Hz, 2- OCH_2CH_3), 69.60 (d, ${}^{1}J_{CP} = 177.2$ Hz, -CH) 129.05 (d, $J_{CP} = 2$ Hz, -C₆H₂), 130.25 (s, $-\underline{C}_6H_2$), 131.57 (d, $J_{CP}=3.3$ Hz, $-\underline{C}_6H_2$), 136.08 (d, $J_{CP} = 8.1$ Hz, $-\underline{C}_{6}H_{2}$), 137.41 (d, $J_{CP} = 3.4$ Hz, $-\underline{C}_{6}H_{2}$), 139.88 (d, J_{CP} = 4.2 Hz, - \underline{C}_{6} H₂) ppm; IR (neat): OH peak was absent; MS (70 eV), m/e (relative intensity %): 431 $(M^++Si(CH_3)_3, 19.3), 358 (M^+, 3.2), 221 (M^+-$ P(O)(OEt)₂, 100), 147 (221-Si(CH₃)₃, 12), 73 (Si(CH₃)₃⁺, 44.3);

C₁₇H₃₁O₄PSi requires C, 56.98; H, 8.66, found: C, 56.90; H, 8.70%.

2h: ¹H NMR (CDCl₃, TMS): δ 0.00 (s, 9H, -Si(CH₃)₃), 1.07–1.24 (m, 6H, 2-OCH₂CH₃), 3.89–4.15 (m, 4H, 2-OCH₂CH₃), 5.81 (d, 1H, ¹J_{PH}=19.3 Hz, -CH), 7.03–7.10 (m, 1H, -C₆H₃), 7.20–7.25 (m, 2H, -C₆H₃), ppm; ¹³C NMR (CDCl₃, TMS): 0.00 (s, -Si(CH₃)₃), 16.86 (d, ³J_{CP}=6.8 Hz, 2-OCH₂CH₃), 16.96 (d, ³J_{CP}=6.8 Hz, 2-OCH₂CH₃), 63.35 (d, ²J_{CP}=7.1 Hz, 2-OCH₂CH₃), 63.60 (d, ²J_{CP}=7.1 Hz, 2-OCH₂CH₃), 63.60 (d, ²J_{CP}=7.1 Hz, 2-OCH₂CH₃), 129.99 (d, J_{CP}=2.9 Hz, -C₆H₃), 131.31 (d, J_{CP}=2.8 Hz, -C₆H₃), 135.73 (d, J_{CP}=8.2 Hz, -C₆H₃), 136.87 (d, J_{CP}=4.9 Hz, -C₆H₃) ppm; IR (neat): OH peak was absent.; MS (70 eV), *m/e* (relative intensity %): 457 (M^+ +Si(CH₃)₃, 100), 389 (M^+ + 4, 2.3), 387 (M^+ +2, 10.8), 385 (M^+ , 14), 247 (M^+ – P(O)(OEt)₂, 52.2), 173 (247-Si(CH₃)₃, 2.4), 73 (Si(CH₃)₃⁺, 93.5);

C₁₄H₂₃Cl₂O₄PSi requires C, 43.64; H, 5.97, found: C, 43.60; H, 5.91%.

21: ¹H NMR (CDCl₃, TMS): δ 0.00 (s, 9H, -Si(CH₃)₃), 1.10 (t, 6H, ¹J_{HH}=7.1 Hz, 2-OCH₂CH₃), 3.79–3.99 (m, 4H, 2-OCH₂CH₃), 5.03 (d, 1H, ¹J_{PH}=14.5 Hz, -CH), 7.33–7.37 (m, 2H, -C₁₀H₇), 7.49–7.52 (m, 1H, -C₁₀H₇), 7.69–7.84 (m, 4H, -C₁₀H₇) ppm; ¹³C NMR (CDCl₃, TMS): 0.00 (s, -Si(CH₃)₃), 16.39 (d, ³J_{CP}=5.6 Hz, 2-OCH₂CH₃), 16.48 (d, ³J_{CP}=5.6 Hz, 2-OCH₂CH₃), 62.77 (d, ²J_{CP}=7.3 Hz, 2-OCH₂CH₃), 63.22 (d, ²J_{CP}=7.3 Hz, 2-OCH₂CH₃), 72.13 (d, ¹J_{CP}=174.4 Hz, -CH), 125.23– 126.44, 127.61–128.06, 133.07–133.21, 134.94–135.48 (-C₁₀H₇) ppm; IR (neat): OH peak was absent; MS (70 eV), *m/e* (relative intensity %): 439 (M⁺+Si(CH₃)₃, 16.2), 366 (M⁺, 4.8), 229 (M⁺-P(O)(OEt)₂, 100), 155 (229-Si(CH₃)₃, 18.8), 73 (Si(CH₃)₃, 87.5);

C₁₈H₂₇O₄PSi requires C, 59.02; H, 7.38, found: C, 59.04; H, 7.35%.

2m: ¹H NMR (CDCl₃, TMS): δ 0.00 (s, 9H, -Si(CH₃)₃), 1.13 (t, 6H, ${}^{1}J_{HH} = 7.0$ Hz, 2-OCH₂CH₃), 3.91–3.99 (m, 4H, 2-OC \underline{H}_2 CH₃), 4.89 (d, 1H, ${}^{1}J_{PH} = 14.5$ Hz, -C \underline{H}), 7.15–7.21 (m, 1H, $-C_5H_4N$), 7.74 (d, 1H, $J_{PH}=7.3$ Hz, $-C_5H_4N$, 8.43 (d, H, $J_{PH} = 4.1$ Hz, $-C_5H_4N$), 8.54 (s, 1H, $-C_5H_4N$) ppm; ¹³C NMR (CDCl₃, TMS): 0.00 (s, $-Si(CH_3)_3$, 16.51 (d, ${}^{3}J_{CP} = 5.1$ Hz, 2-OCH₂CH₃), 16.58 (d, ${}^{3}J_{CP} = 5.1$ Hz, 2-OCH₂CH₃), 63.06 (d, ${}^{2}J_{CP} = 7.3$ Hz, 2-OCH₂CH₃), 63.43 (d, ${}^{2}J_{CP}=7.3$ Hz, 2-OCH₂CH₃), 69.88 (d, ${}^{1}J_{CP} = 175.8$ Hz, -CH), 123.31 (d, $J_{CP} = 2.6$ Hz, $-C_5H_4N$), 133.53 (s, $-C_5H_4N$), 135.14 (d, $J_{CP}=4.9$ Hz, $-C_5H_4N$, 148.69 (d, $J_{CP}=6.7$ Hz, $-C_5H_4N$), 149.43 (d, $J_{\rm CP}$ =3.3 Hz, - C_5H_4N) ppm; IR (neat): OH peak was absent; MS (70 eV), m/e (relative intensity %): 390 (M⁺+ Si(CH₃)₃, 62.1), 317 (M⁺, 1.2), 180 (M⁺-P(O)(OEt)₂, 86.2), 108 (180-Si(CH₃)₃, 48.8), 73 (Si(CH₃)₃, 100);

C₁₃H₂₄NO₄PSi requires C, 49.21; H, 7.57, found: C, 49.18 H, 7.51%.